Optimal tight frames and quantum measurement

نویسندگان

  • Yonina C. Eldar
  • G. David Forney
چکیده

Tight frames and rank-one quantum measurements are shown to be intimately related. In fact, the family of normalized tight frames for the space in which a quantum mechanical system lies is precisely the family of rank-one generalized quantum measurements (POVMs) on that space. Using this relationship, frame-theoretical analogues of various quantum-mechanical concepts and results are developed. The analogue of a least-squares quantum measurement is a tight frame that is closest in a least-squares sense to a given set of vectors. The least-squares tight frame is found for both the case in which the scaling of the frame is specified (constrained least-squares frame (CLSF)) and the case in which the scaling is free (unconstrained least-squares frame (ULSF)). The wellknown canonical frame is shown to be proportional to the ULSF and to coincide with the CLSF with a certain scaling. Finally, the canonical frame vectors corresponding to a geometrically uniform vector set are shown to be geometrically uniform and to have the same symmetries as the original vector set. Research Laboratory of Electronics, Massachusetts Institute of Technology, Room 36-615, Cambridge, MA 02139. E-mail: [email protected]. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail: [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A recursive construction of a class of finite normalized tight frames

Finite normalized tight frames are interesting because they provide decompositions in applications and some physical interpretations. In this article, we give a recursive method for constructing them.

متن کامل

A-B-imprimitivity bimodule frames

Frames in Hilbert bimodules are a special case of frames in Hilbert C*-modules. The paper considers A-frames and B-frames and their relationship in a Hilbert A-B-imprimitivity bimodule. Also, it is given that every frame in Hilbert spaces or Hilbert C*-modules is a semi-tight frame. A relation between A-frames and K(H_B)-frames is obtained in a Hilbert A-B-imprimitivity bimodule. Moreover, the ...

متن کامل

Realization Schemes for Quantum Instruments in Finite Dimensions

We present a general dilation scheme for quantum instruments with continuous outcome space in finite dimensions, in terms of an indirect POVM measurement performed on a finite dimensional ancilla. The general result is then applied to a large class of instruments generated by operator frames, which contains group-covariant instruments as a particular case, and allows one to construct dilation s...

متن کامل

Optimality beyond the Welch bound: orthoplectic Grassmannian frames as weighted complex projective 2-designs

Despite being pursued with a lot of dedication in frame theory and quantum information theory, maximal equiangular tight frames have only been confirmed to exist for lowest dimensions. This is especially puzzling since maximal sets of mutually unbiased bases, which are also known to be optimal packings but have a slightly larger number of vectors, are known to exist in complex Hilbert spaces of...

متن کامل

Measurement design for detecting sparse signals

We consider the problem of testing for the presence (or detection) of an unknown sparse signal in additive white noise. Given a fixed measurement budget, much smaller than the dimension of the signal, we consider the general problem of designing compressive measurements to maximize the measurement signal-to-noise ratio (SNR), as increasing SNR improves the detection performance in a large class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2002